skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bahadori, Tarlan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geospatial data visualization on a map is an essential tool for modern data exploration tools. However, these tools require users to manually configure the visualization style including color scheme and attribute selection, a process that is both complex and domain-specific. Large Language Models (LLMs) provide an opportunity to intelligently assist in styling based on the underlying data distribution and characteristics. This paper demonstrates LASEK, an LLM-assisted visualization framework that automates attribute selection and styling in large-scale spatio-temporal datasets. The system leverages LLMs to determine which attributes should be highlighted for visual distinction and even suggests how to integrate them in styling options improving interpretability and efficiency. We demonstrate our approach through interactive visualization scenarios, showing how LLM-driven attribute selection enhances clarity, reduces manual effort, and provides data-driven justifications for styling decisions. 
    more » « less
    Free, publicly-accessible full text available July 2, 2026